
Delivering
software
securely

White paper
January 2022

Understanding
the software
supply chain

Page 04

Industry-wide
standards and
frameworks

Page 09

Managed
services at
each stage

Page 11

Getting
started

Page 17

Further
reading

Page 18

Table of Contents

Industry-wide
standards and
frameworks

Current security landscape 			 04

The software supply chain 			 05

The weak link in the chain			 06

Making the chain stronger			 08

Chapter

Chapter

01

02

Understanding
the software
supply chain

Table of Contents

Getting
started

Chapter

Chapter

Chapter

03

05
04

Managed
services for
each stage

Further
reading

Phase 1: Code 			 12

Phase 2: Build 			 13

Phase 3: Package			 15

Phase 4 & 5: Deploy and run			 15

4

Current security landscape

Speed and time to market are top priorities for organizations everywhere that build software and applications
to meet their customers’ needs. These strategic imperatives have been the driving force behind the tremendous
growth of containers as the platform of choice. Over the past year, having reaped the benefits of containers, which
include faster time to market, higher availability, improved security, better scalability, and reduced costs, many of
these organizations have started thinking about the serverless approach as well.

While software solutions have reduced the time it takes to deliver a new feature or even a new product, many of the
existing security practices are unable to keep up with the increase in velocity, leading to one of three problems:

Development teams work
around existing security
processes to meet deadlines,
making them vulnerable

Security and operations teams
make compromises that open
the organization up to threats

Developers are slowed
down by existing processes,
resulting in delays

Chapter

01 Understanding
the software
supply chain

The last few years have seen a slew of security breaches classified as “software supply chain” attacks.

Log4Shell was a dangerous vulnerability in Apache Log4j software identified in December 2021. Flagged with the
maximum CVSS score of 10, this vulnerability was particularly devastating because of the popularity of Log4j, a
Java-based logging framework. Two things contributed to the severity: first, it was very easy to exploit and allowed
for full remote code execution, and second, it was often many layers deep in the dependency tree and therefore
easily missed.

Solarwinds, an IT management software firm, was attacked by nation-state actors who injected malicious code
into official builds of open-source software in use at the company. This malicious update was pushed to 18,000
customers, including the U.S. Treasury and Commerce Departments.

Kaseya, another IT management software provider, was attacked via a zero-day vulnerability that compromised the
Kaseya VSA server and sent a malicious script to deliver ransomware that encrypted all files on the
affected systems.

The urgent need to respond to these and other similar incidents led the White House to release an Executive Order
in May 2021 requiring organizations that do business with the federal government to maintain certain standards of
software security.

The software supply chain

In many ways, the term “software supply chain” is very appropriate: the processes that go into creating a software
supply chain are very similar to those that go into manufacturing a car.

5

The weak link in the chain

As in the case of the high-profile attacks last year, each of the steps in the process can lead to a weakness
attackers can exploit.

For example, the average npm package has 12 direct dependencies and about 300 indirect dependencies. In
addition, we know that nearly 40% of all published npm packages depend on code with known vulnerabilities.

Those vulnerabilities might not actually make the code unsafe—for instance, the vulnerability might be in a part of
the library that’s never actually used. But these vulnerabilities still must be checked.

6

It only takes one unsecured link to breach the software supply chain

Person Source Build DeployPackage

Dependency
(Includes build toolchains)

Resource

Process

Resource

A car manufacturer obtains various off-the-shelf parts, manufactures its own proprietary components, and then
puts them all together using a heavily automated process. The manufacturer ensures the security of its operations
by making sure each third-party component comes from a trusted source. First-party components are tested
extensively to ensure they don’t have security issues. And finally, assembly is carried out through a trusted process
that results in finished cars.

The software supply chain is similar in many ways. A software manufacturer obtains third-party components often
open source in nature that perform specific functions and develops its own software, which is its core intellectual
property. The code is then run through a build process that combines these components into deployable artifacts,
which are then deployed into production.

https://software-lab.org/publications/usenixSec2019-npm.pdf

The scale of this problem is monumental. If even one of these vulnerabilities were to go unpatched, it could provide
an opportunity for bad actors to gain entry to your software supply chain.

Here are a few examples of attacks that leveraged vulnerabilities in each of these stages depicted in the
diagram above.

7

Threat Known example

A
Submit bad code to the source
repository

Linux hypocrite commits: Researcher attempted to intentionally introduce
vulnerabilities into the Linux kernel via patches on the mailing list.

B
Compromise source control
platform

PHP: Attacker compromised PHP’s self-hosted git server and injected
two malicious commits.

C
Build with official process but from
code not matching source control

Webmin: Attacker modified the build infrastructure to use source files not
matching source control.

D
Compromise build platform SolarWinds: Attacker compromised the build platform and installed an

implant to inject malicious behavior during each build.

E
Use bad dependency (i.e., A-H,
recursively)

event-stream: Attacker added an innocuous dependency and then
updated the dependency to add malicious behavior. The update did not
match the code submitted to GitHub (i.e., attack F).

F
Upload an artifact that was not built
by the CI/CD system

CodeCov: Attacker used leaked credentials to upload a malicious artifact
to a GCS bucket, from which users download directly.

G
Compromise package repository Attacks on Package Mirrors: Researcher ran mirrors for several popular

package repositories, which could have been used to serve malicious
packages.

H
Trick consumer into using bad
package

Browserify typosquatting: Attacker uploaded a malicious package with a
similar name as the original.

Source Integrity

Developer

SCM

Compromise
source control

(B)

Compromise
build platform

(D)

Bypass
CI/CD

(F)

Use bad
package

(H)

Compromise
package repository

(G)

Modify
code
(C)

Use bad
dependency

(E)

Submit
bad code

(A)

Build Integrity

CI/CD Distribution

Source Package

Dependency

Build Use

Artifact

Process

Platform

https://lore.kernel.org/lkml/202105051005.49BFABCE@keescook/
https://news-web.php.net/php.internals/113838
https://www.webmin.com/exploit.html
https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/
https://schneider.dev/blog/event-stream-vulnerability-explained/
https://about.codecov.io/apr-2021-post-mortem/
https://theupdateframework.io/papers/attacks-on-package-managers-ccs2008.pdf
https://blog.sonatype.com/damaging-linux-mac-malware-bundled-within-browserify-npm-brandjack-attempt

Making the chain stronger: Google Cloud’s thought leadership
in open source

At Google, we have been building global-scale applications for decades. Over time we have open sourced many of
our internal projects to help increase developer velocity. At the same time, we developed various internal processes
to help secure the software experience.

Here are some of the efforts we are involved in to make software supply chains stronger everywhere.

Increased Investment – We announced in August 2020 that we will invest $10 billion over the next five
years to strengthen cybersecurity, including expanding zero-trust programs, helping secure the software
supply chain, and enhancing open-source security.

Supply-chain Levels for Software Artifacts (SLSA) – SLSA is an end-to-end framework for supply
chain integrity. It is an open-source equivalent of many of the processes we have been implementing
internally at Google. SLSA provides an auditable provenance of what was built and how.

DevOps Research and Assessment (DORA) – Our DORA team conducted a seven-year research
program, validating a number of technical, process, measurement, and cultural capabilities that drive
higher software delivery and organizational performance.

Open Source Security Foundation – We co-founded Open Source Security Foundation in 2019, a cross-
industry forum on supply chain security.

Allstar – Allstar is a GitHub App installed on organizations or repositories to set and enforce security
policies. This allows for continuous enforcement of security best practices for GitHub projects.

Open Source Scorecards – Scorecards use evaluation metrics like well-defined security policy, code
review process, and continuous test coverage with fuzzing and static code analysis tools to provide a
risk score for open-source projects.

We believe two things are necessary to overcome the problem of software supply chain security:

1. Industry-wide standards and frameworks.

2. Managed services that implement these standards using principles of least privilege in a zero-trust architecture.
A zero-trust architecture is one in which no person, device, or network enjoys inherent trust; instead, all trust,
which allows access to information, must be earned.

Let’s look into these one by one:

8

https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://cloud.google.com/blog/topics/developers-practitioners/what-zero-trust-identity-security

9

To understand the principles that go into securing the software supply chain, let’s start with SLSA.

In its current state, SLSA is a set of incrementally adoptable security guidelines being established by industry
consensus. In its final form, SLSA will differ from a list of best practices in its enforceability: it will support the
automatic creation of auditable metadata that can be fed into policy engines to give “SLSA certification” to a
particular package or build platform.

SLSA is designed to be incremental and actionable and to provide security benefits at every step. Once an artifact
qualifies at the highest level, consumers can have confidence that it has not been tampered with and can be
securely traced back to its source—something that is difficult, if not impossible, to do with most software today.

Industry-wide
standards and
frameworks

Chapter

02

SLSA 1 requires that the build process be fully scripted/automated
and generate provenance. Provenance is metadata about how an
artifact was built, including the build process, top-level source, and
dependencies. Knowing the provenance allows software consumers
to make risk-based security decisions. Though provenance at SLSA
1 does not protect against tampering, it offers a basic level of code
source identification and may aid in vulnerability management.

SLSA 2 requires using version control and a hosted build service that
generates authenticated provenance. These additional requirements
give the consumer greater confidence in the origin of the software.
At this level, the provenance prevents tampering to the extent that
the build service is trusted. SLSA 2 also provides an easy upgrade
path to SLSA 3.

SLSA 3 further requires that the source and build platforms meet
specific standards to guarantee the auditability of the source and
the integrity of the provenance, respectively. SLSA 3 provides
much stronger protections against tampering than earlier levels by
preventing specific classes of threats, such as cross-
build contamination.

SLSA 4 is currently the highest level, requiring two-person review
of all changes and a hermetic, reproducible build process. Two-
person review is an industry best practice for catching mistakes
and deterring bad behavior. Hermetic builds guarantee that the
provenance’s list of dependencies is complete. Reproducible
builds, though not strictly required, provide many auditability and
reliability benefits. Overall, SLSA 4 gives the consumer a high
degree of confidence that the software has not been tampered with.
More details on these proposed levels can be found in the GitHub
repository, including the corresponding Source and Build/
Provenance requirements.

SLSA consists of
four levels, with
SLSA 4 representing
the ideal end state.
The lower levels
represent incremental
milestones with
corresponding
incremental integrity
guarantees. The
requirements are
currently defined
as follows:

10

The software supply chain can be broken down into five
distinct phases: code, build, package, deploy, and run.
We will address each of these phases in terms of our
approach to security.

https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html

11

At Google Cloud, we provide fully managed tools, from code and build to deploy and run, with the above standards
and best practices implemented by default.

Securing your software supply chain requires establishing, verifying, and maintaining a chain of trust that
establishes the provenance of your code and ensures that what you’re running in production is what you
intended. At Google, we accomplish this via attestations that are generated and checked throughout the software
development and deployment process, enabling a level of ambient security through things like code review, verified
code provenance, and policy enforcement. Together, these processes help us minimize software supply chain risk
while improving developer productivity.

At the base, we have common secure infrastructure services like identity and access management and audit
logging. Next, we secure your software supply chain with a way to define, check, and enforce attestations across
your software lifecycle.

Let’s look more closely at how to achieve ambient security in your development process through policies and
provenance on Google Cloud.

Chapter

03Managed
services for
each stage

Code

Code Cloud Build

Build Package Deploy Run

Binary Kubernetes
Engine

Cloud Run
(preview)

Image metadata

Vulnerability Scanning

Phase 1: Code

Securing your software supply chain begins when your developers start designing your application and writing
code. This includes both first-party software as well as open source components, each of which comes with its
own challenges.

Open source software and dependencies
Open source empowers developers to build things faster so organizations can be more nimble and productive. But
open source software is not perfect by any means, and while our industry depends on it, we often have very little
insight into its dependencies and the varying levels of risk that come with it. For most enterprises, the risk primarily
results from either vulnerabilities or licenses.

The open source software, packages, base images, and other artifacts you depend on form the foundation of your
“chain of trust.”

For example, consider that your organization is building software “a.” This diagram shows the chain of trust;
in other words, the number of implicit dependencies in your project. In the diagram, “b” through “h” are direct
dependencies and “i” through “m” are indirect dependencies.

Now consider that there is a vulnerability deep down in the dependency tree. The problem can show up across
many components very quickly. Moreover, dependencies change quite frequently: on an average day, 40,000 npm
packages see a change in their dependencies.

Open Source Insights is a tool built by Google Cloud that provides a transitive dependency graph so you can see
your dependencies and their dependencies, all down the dependency tree. Open Source Insights is continuously
updated with security advisories, licensing information, and other security data across multiple languages all in
one place. When used in conjunction with Open Source Scorecards, which provide a risk score for open source
projects, Open Source Insights helps your developers make better choices across the millions of open source
packages available.

12

A

b c d

i

k l m

e f g h

j

Software you trust
is built upon a
complex graph

https://deps.dev/

To address this concern, it is key to focus on the
dependencies as code. As these dependencies move
toward the end of the supply chain, it’s harder to inspect
them. To secure your dependencies, we recommend
starting with the supply:

• Use tools like Open Source Insights and OSS
Scorecards to get a better understanding of
your dependencies.

• Scan and verify all code, packages, and base images
through an automated process that is a key part of
your workflow.

• Control how people access these dependencies. It is
critical to tightly control the repositories for both first-
party and open source code, with constraints around
thorough code review and audit requirements.

We will cover the build and deploy processes in more
detail further on, but it’s also important to verify the
provenance of the build, leverage a secure build
environment, and ensure that the images are signed and
subsequently validated at deploy time.

There are also a number of safe coding practices
developers can employ:

• Automate testing

• Use memory-safe software languages

• Mandate code reviews

• Ensure commit authenticity

• Identify malicious code early

• Avoid exposing sensitive information

• Require logging and build output

• Leverage license management

13

Phase 2: Build

The next step in securing your software supply
chain involves establishing a secure build
environment at scale. The build process in essence
starts with importing your source code in potentially
one of many languages from a repository and
executing builds to meet the specifications laid out
in your config files.

Cloud providers like Google give you access to an
up-to-date managed build environment that lets you
build images at any scale you need.

As you go through the build process, there are a
number of things to think about:

•	 Are your secrets secure during the build process
and beyond?

•	 Who has access to your build environments?

•	 What about relatively new attack vectors or
exfiltration risks?

To develop a secure build environment, you should
start with secrets. They are critical and relatively
easy to secure. Start by ensuring that your secrets
are never plaintext and as far as possible not part
of your build. Instead you should ensure they are
encrypted and your builds are parameterized to
refer to external secrets to use as needed. This
also simplifies periodic rotation of secrets and
minimizes the impact of any leaks.

The next step is to set up permissions for your
build. There are various users and service accounts
involved in your build process, for instance, some
users may need to be able to manage secrets, while
others may need to manage the build process by
adding or modifying steps, and still others may just
need to view logs.

https://deps.dev/
https://cloud.google.com/solutions/shifting-left-on-security
https://cloud.google.com/secret-manager/docs/overview

As you do this, it is important to follow these best
practices:

•	 The most important is the principle of least
privilege. Implement finegrain permissions to
give users and service accounts the precise
permissions they need to effectively do their jobs.

•	 Make sure you know how users and service
accounts interact and have a clear understanding
of the chain of responsibility from setting up a
build to executing it to the downstream effects of
the build.

Next, as you scale up this process, establish
boundaries around your build to the extent possible
and then use automation to scale up through config
as code and parameterization. This allows you to
audit any changes to your build process effectively.
In addition, make sure you meet compliance
needs through approval gating for sensitive builds
and deployments, pull requests for infrastructure
changes, and regular human-driven reviews of
audit logs.

Finally, make sure the network suits your needs. In
most cases, it is best to host your own source code in
private networks behind firewalls. Google Cloud gives
you access to features like Cloud Build Private Pools,
a locked down serverless build environment within
your own private network perimeter, and features like
VPC Service Controls to prevent exfiltration of your
intellectual property.

Binary Authorization

While IAM is both a must-have and a logical starting
point, it is not foolproof. Leaky credentials represent
a serious security risk, so to reduce your reliance on
IAM you can switch to an attestation-based system

14

that’s less error-prone. Google uses a system called
binary authorization, which allows only trusted
workloads to be deployed.

The binary authorization service establishes, verifies,
and maintains a chain of trust via attestations and
policy checks throughout the process. Essentially,
binary authorization generates cryptographic
signatures—attestations—as code and other artifacts
move toward production, and then before deployment
these attestations are checked based on policies.

When using Google Cloud Build, a set of attestations
is captured and added to your overall chain of trust.
For example, attestations are generated for which
tasks were run, what build tools and processes were
used, and so on. Notably, Cloud Build helps you
achieve SLSA Level 1 by capturing the source of the
build configuration, which can be used to validate
that the build was scripted. Scripted builds are more
secure than manual builds and are required for SLSA
Level 1. In addition, your build’s provenance and other
attestations can be looked up using the container
image digest, which creates a unique signature for
any image, and is also required for SLSA Level 1.

15

Phase 3: Package

Once your build is complete, you have a container
image that is almost ready for production. It is
essential to have a secure location to store your
images that can prevent tampering of existing images
and uploads of unauthorized images. Your package
manager would likely need to have images for both
first-party and open-source builds as well as language
packages your applications use.

Google Cloud’s Artifact Registry provides you with
such a repository. Artifact Registry is a single place
for your organization to manage both container
images as well as language packages (such as
Maven and npm). It is fully integrated with Google
Cloud’s tooling and runtimes and comes with support
for native artifact protocols. This makes it simple to
integrate with your CI/CD tooling as you work to set up
automated pipelines.

Similar to the build step, it is essential to ensure access
permissions to Artifact Registry are well thought
through and follow the principles of least privilege.
Beyond restricting unauthorized access, the package
repository can provide a lot more value. Artifact
Registry for instance includes vulnerability scanning
to scan your images and ensure they are safe to
deploy. This service scans images against a constantly
refreshed and updated vulnerability database to
evaluate against new threats and can alert you when a
vulnerability is found.

This step generates additional metadata, including an
attestation for whether an artifact’s vulnerability results
meet certain security thresholds. This information is
then stored in our analysis service, which structures
and organizes the artifact’s metadata, making it readily
accessible to binary authorization. You can use this
to automatically prevent risky images from being
deployed to Google Kubernetes Engine (GKE).

Phase 4 & 5: Deploy and
run

The final two phases of the software security supply
chain are deploy and run. While these are two
separate steps, it makes sense to think about them
together as a way to ensure that only authorized builds
make it to production.

At Google, we’ve developed best practices for
determining what kind of builds should be authorized.
This starts with ensuring the integrity of your supply
chain so that it produces only artifacts that you can
trust. Next, it includes vulnerability management as
part of the software delivery lifecycle. Finally, we put
those two pieces together to enforce workflows based
on policies for integrity and vulnerability scanning.

When you get to this stage, you have already been
through the code, build, and package phases;
attestations captured along the supply chain can be
verified for authenticity by binary authorization. In
enforcement mode, an image is deployed only when
the attestations meet your organization’s policies,
and in audit mode, policy violations are logged and
trigger alerts. You can also use binary authorization
to restrict builds from running unless they were built
using the sanctioned Cloud Build process. Binary
authorization ensures that only properly reviewed and
authorized code gets deployed.

Deploying your images to a trusted runtime
environment is essential. Our managed
Kubernetes platform, GKE, takes a security-first
approach to containers.

GKE takes care of much of the cluster security
concerns you need to care about. Automatic cluster
upgrades allow you to keep your Kubernetes patched
and up-to-date automatically using release channels.
Secure boot, shielded nodes, and integrity checks

https://cloud.google.com/artifact-registry

16

ensure that your node’s kernel and cluster components
haven’t been modified and are running what you intend
and that malicious nodes can’t join your cluster. Finally,
confidential computing allows you to run clusters with
nodes whose memory is encrypted so that data can
be kept confidential even while it’s being processed.
Couple that with data encryption while at rest and
in transit over the network, and GKE provides a very
secure, private, and confidential environment to run your
containerized workloads.

Beyond this, GKE also enables better security for
your applications through certificate management for
your load balancers, workload identity, and advanced
network capabilities with a powerful way to configure
and secure the ingress into your cluster. GKE also offers
sandboxed environments to run untrusted applications
while protecting the rest of your workloads.

With GKE Autopilot, GKE’s security best practices
and features are automatically implemented,
further reducing the attack surface and minimizing
misconfiguration that can lead to security issues.

Of course, the need for verification doesn’t stop
at deployment. Binary authorization also supports
continuous validation, enabling continued conformance
to the defined policy even after deployment. If a
running application falls out of conformance with an
existing or newly added policy, an alert is created and
logged, giving you confidence that what you’re running
in production is exactly what you intended.

Vulnerability management
Along with ensuring integrity, another aspect of supply
chain security is ensuring that any vulnerabilities are
found quickly and patched. Attackers have evolved to
actively insert vulnerabilities into upstream projects.
Vulnerability management and defect detection should
be incorporated throughout all stages of the software
delivery lifecycle.

Once the code is ready for deployment, use a CI/
CD pipeline and take advantage of the many tools
available to do a comprehensive scan of the source
code and the generated artifacts. These tools include
static analyzers, fuzzing tools, and various types of
vulnerability scanners.

After you’ve deployed your workload to production, and
while it’s running in production and serving your users,
it’s necessary to monitor emerging threats and have
plans for taking immediate remediation action.

Conclusion
To recap, securing a software supply chain is all about
taking best practices like SLSA and using trusted
managed services that help you implement these best
practices.

It is essential to

•	 Start with your code and dependencies and ensure
you can trust them.

• Protect your build system and use attestations to
verify all necessary build steps were followed.

• Make sure all your packages and artifacts are
trusted and cannot be tampered with.

• Enforce controls over who can deploy what and
maintain an audit trail. Use binary authorization to
validate attestations for every artifact you want
to deploy.

• Run your applications in a trusted environment and
ensure no one can tamper with them while they are
running. Keep a watch for any newly discovered
vulnerabilities so you can protect your deployment.

At Google, we build in best practices for each step
along this journey into our product portfolio so you
have a trusted foundation to build upon.

17

Ready to start securing your software supply chain? Just to be clear, where you begin is largely arbitrary—there’s no
one action that’s going to secure your entire supply chain, and there’s no one action that’s more important than any
other when it comes to total supply chain security. That said, here are four recommendations for getting started.

1. Patch your software

If you’ve deployed code into your production
environment with known vulnerabilities, you’ve
done the attacker’s job for them. From that point
it doesn’t matter how well you’ve secured your
software supply chain because they’ve already got
a way in. So, patching is critical.

2. Take control of what’s
running in your environment

Once you’re on top of patching, you want to be able
to control your software supply chain itself. This
starts with being able to assert that what you’re
running really came from your build tools or trusted
repositories. That level of control helps prevent
both purposeful attacks and inadvertent errors, like
in the case of a developer who deployed something
they didn’t realize was unsafe. This gives you a
strong foundation for adding tools like click tests
and binary authorization.

3. Ensure third-party vendor
packages are secure

An emerging issue in supply chain security is the
frequency with which vendors’ software is being
compromised to provide a conduit for ransomware
or unauthorized access into their target customer
deployments. The third-party vendor packages
you run in your environment—for instance, system
management products, network management
products, or security products—often have high
degrees of privilege. We suggest asking those vendors
to go beyond their boilerplate security statements to
provide a degree of assurance about the packages
you’re using. You might ask them what their SLSA level
of conformance is or whether they’re in scope of the
requirements in the recent Executive Order.

4. Have a private copy of your
source code

If you’re using open source software, don’t use a
version you pull directly off the Internet to build from.
Instead, have a private copy you keep patched so you
have a clean place to start with for every build and can
know with 100% confidence where the source code
came from.

Getting
started

Chapter

04

18

DevOps best practices

1. Six years of the State of DevOps Report, a set of
articles with in-depth information on the capabilities
that predict software delivery performance, and a
quick check to help you find out how you’re doing
and how to get better.

2. Google Cloud 2021 Accelerate State of
DevOps Report

3. Google Cloud whitepaper: Re-architecting to cloud
native: an evolutionary approach to increasing
developer productivity at scale

Securing the software supply chain

1. Google Cloud blog: What is zero trust
identity security?

2. Google Security blog: Introducing SLSA, an end-to-
end framework for supply chain integrity

3. Google Cloud whitepaper: Shifting left on security:
Securing software supply chains

Ready to take
your next steps?
To find out more about how Google Cloud can help
secure your software supply chain and your business,
just get in touch.

Talk to an expert

Chapter

05 Further
reading

http://cloud.google.com/devops
https://cloud.google.com/devops/state-of-devops
https://cloud.google.com/devops/state-of-devops
https://www.google.com/url?q=https://cloud.google.com/rearchitecting-to-cloud-native-whitepaper&sa=D&source=docs&ust=1639775009203000&usg=AOvVaw3GgdtVrSBm4BbeyF6TYx9P
https://www.google.com/url?q=https://cloud.google.com/rearchitecting-to-cloud-native-whitepaper&sa=D&source=docs&ust=1639775009203000&usg=AOvVaw3GgdtVrSBm4BbeyF6TYx9P
https://www.google.com/url?q=https://cloud.google.com/rearchitecting-to-cloud-native-whitepaper&sa=D&source=docs&ust=1639775009203000&usg=AOvVaw3GgdtVrSBm4BbeyF6TYx9P
https://cloud.google.com/blog/topics/developers-practitioners/what-zero-trust-identity-security
https://cloud.google.com/blog/topics/developers-practitioners/what-zero-trust-identity-security
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://cloud.google.com/files/shifting-left-on-security.pdf
https://cloud.google.com/files/shifting-left-on-security.pdf
https://www.google.com/url?q=https://inthecloud.withgoogle.com/born-digital/dl-cd.html?utm_source%3Dgoogle%26utm_medium%3Det%26utm_campaign%3DFY21-Q3-northam-NA1231-website-cs-digital_natives_contact_form%26utm_content%3Dre-architecting-whitepaper%26utm_term%3D-&sa=D&source=docs&ust=1639775146973000&usg=AOvVaw2TbbVmpXGocdB_3lmN92wI
https://www.google.com/url?q=https://inthecloud.withgoogle.com/born-digital/dl-cd.html?utm_source%3Dgoogle%26utm_medium%3Det%26utm_campaign%3DFY21-Q3-northam-NA1231-website-cs-digital_natives_contact_form%26utm_content%3Dre-architecting-whitepaper%26utm_term%3D-&sa=D&source=docs&ust=1639775146973000&usg=AOvVaw2TbbVmpXGocdB_3lmN92wI

